JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ribonucleotide reductase M2B inhibits cell migration and spreading by early growth response protein 1-mediated phosphatase and tensin homolog/Akt1 pathway in hepatocellular carcinoma.

UNLABELLED: Ribonucleotide reductase (RR)M2B is an enzyme belonging to the ribonucleotide reductase enzyme family, which is essential for DNA synthesis and repair. RRM2B plays an important role in tumor progression and metastasis; however, little is known about the expression and underlying molecular mechanisms of RRM2B in hepatocellular carcinoma (HCC). In the present study, we report that down-regulation of RRM2B in HCC is negatively associated with intrahepatic metastasis, regardless of p53 status. Moreover, the ectopic overexpression of RRM2B decreased HCC cell migration and invasion in vitro, whereas silencing RRM2B expression resulted in increased migration and invasion in vitro and intrahepatic and lung metastasis in vivo. Additionally, knockdown of RRM2B by short hairpin RNA (shRNA) in HCC cells was associated with epithelial-mesenchymal transition (EMT), including the down-regulation of E-cadherin, and the concomitant up-regulation of N-cadherin and slug. A further experiment showed that RRM2B inhibited cell migration and spreading through regulation of the early growth response protein 1 (Egr-1)/phosphatase and tensin homolog (PTEN)/Akt1 pathway. Consistently, we also detected a significant correlation between RRM2B and E-cadherin protein expression in HCC tissues. Furthermore, Egr-1 also directly bound to the RRM2B promoter and repressed RRM2B transcription, thereby establishing a negative regulatory feedback loop.

CONCLUSION: These findings indicate that RRM2B suppresses cell migration and spreading by way of modulation of the Egr-1/PTEN/Akt1 pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app