JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression.

BACKGROUND: The uncertainty over the true morphological changes in brains with major depressive disorder (MDD) underlines the necessity of comprehensive studies with multimodal structural brain imaging analyses. This study aimed to evaluate the differences in cortical thickness, cortical and subcortical volume, and white matter integrity between first episode, medication-naïve MDD patients and healthy controls.

METHODS: Subjects with their first episode of MDD whose illness duration had not exceeded 6 months (n=20) were enrolled in this study and were compared to age-, sex-, and education level-matched healthy controls (n=22). All participants were subjected to T1-weighted structural magnetic resonance imaging (MRI). We used an automated procedure of FreeSurfer and Tract-based spatial statistics (TBSS) to analyze differences in cortical thickness, cortical and subcortical volume, and white matter integrity between two groups.

RESULTS: The patients with first episode MDD exhibited significantly reduced cortical volume in the caudal anterior cingulate gyrus (P<0.0015) compared to healthy controls. We also observed altered white matter integrity in the body of the corpus callosum (P<0.01), reduced cortical volume of the caudal middle frontal gyrus and medial orbitofrontal gyrus, and enlarged hippocampal volume in the first episode MDD patients.

LIMITATIONS: We relied on a relatively small sample size and cortical volume reduction in several brain regions was not replicated in the analysis of cortical thickness.

CONCLUSIONS: Using multimodal imaging analyses on medication-naïve first episode MDD patients, we demonstrated fundamental structural alteration of brain gray and white matter, such as reduced cortical volume of the caudal ACC and white matter integrity in the body of the corpus callosum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app