Add like
Add dislike
Add to saved papers

Photodissociation mechanisms of the CO2(2+) dication studied using multi-state multiconfiguration second-order perturbation theory.

Employing the multi-state multiconfiguration second-order perturbation theory (MS-CASPT2) and complete active space self-consistent field (CASSCF) methods, the geometries, relative energies (T(v)') to the ground state (X(3)Σg(-)), adiabatic excited energies, and photodissociation mechanisms and corresponding kinetic energy releases for the lower-lying 14 electronic states of the CO2 (2+) ion are studied. The T(v)' values are calculated at the experimental geometry of the ground state CO2 molecule using MS-CASPT2 method and highly close to the latest threshold photoelectrons coincidence and time-of-flight photoelectron photoelectron coincidence spectrum observations. The O-loss dissociation potential energy curves (PECs) for these 14 states are drawn using MS-CASPT2 partial optimization method at C(∞v) symmetry with one C-O bond length ranging from 1.05 to 8.0 Å. Those 14 states are confirmed to be correlated to the lowest four dissociation limits [CO(+)(X(2)Σ(+)) + O(+)((4)S(u)), CO(+)(A(2)Π) + O(+)((4)S(u)), CO(+)(X(2)Σ(+)) + O(+)((2)D(u)), and CO(+)(X(2)Σ(+)) + O(+)((2)P(u))] by analyzing Coulomb interaction energies, charges, spin densities, and bond lengths for the geometries at the C-O bond length of 8.0 Å. On the basis of these 14 MS-CASPT2 PECs, several state/state pairs are selected to optimize the minimum energy crossing points (MECPs) at the CASSCF level. And then the CASSCF spin-orbit couplings and CASPT2 state/state energies are calculated at these located MECPs. Based on all of the computational results, the photodissociation mechanisms of CO2(2+) are proposed. The relationships between the present theoretical studies and the previous experiments are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app