JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Strain differences in the effect of rTMS on cortical expression of calcium-binding proteins in rats.

Using a rat model to study the cellular effects of repetitive transcranial magnetic stimulation (rTMS) with regard to changes in cortical excitability, we previously described opposite effects of continuous and intermittent theta-burst stimulation (cTBS, iTBS) on the expression of the calcium-binding proteins (CaBP) parvalbumin (PV), calbindin (CB) and calretinin (CR) in Dark Agouti rats (DA). While iTBS significantly reduced the number of cortical PV+ cells but did not affect the CB+ cells, cTBS resulted in a decrease in CB+ cells with no effects on PV+ cells. We concluded that activity of these classes of cortical interneurons is differently modulated by iTBS and cTBS. When testing two further rat strains, Sprague-Dawley (SD) and Long Evans (LE), we obtained deviating results. In SD, iTBS reduced PV and CB expression, while cTBS only reduced PV expression. In contrast, reanalysed DA showed reduced CB expression after cTBS and reduced PV expression after iTBS, while LE shows an intermediate reaction. CR expression was unaffected in any case. Interestingly, we found significantly different basal expression patterns of the CaBPs for the strains, with DA and LE showing much higher numbers of PV+, CB+ and CR+ cells than SD, and with particularly higher number of CB+ and CR+ cells in DA compared to the other two strains. These findings demonstrate that inhibitory systems may be either differently developed in rats belonging to diverse strains or show different basal levels of activity and CaBP expression and may therefore be differently sensitive to the rTMS protocols.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app