Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

OATP1A/1B transporters affect irinotecan and SN-38 pharmacokinetics and carboxylesterase expression in knockout and humanized transgenic mice.

Organic anion-transporting polypeptides (OATP) mediate the hepatic uptake of many drugs, thus codetermining their clearance. Impaired hepatic clearance due to low-activity polymorphisms in human OATP1B1 may increase systemic exposure to SN-38, the active and toxic metabolite of the anticancer prodrug irinotecan. We investigated the pharmacokinetics and toxicity of irinotecan and SN-38 in Oatp1a/1b-null mice: Plasma exposure of irinotecan and SN-38 was increased 2 to 3-fold after irinotecan dosing (10 mg/kg, i.v.) compared with wild-type mice. Also, liver-to-plasma ratios were significantly reduced, suggesting impaired hepatic uptake of both compounds. After 6 daily doses of irinotecan, Oatp1a/1b-null mice suffered from increased toxicity. However, Oatp1a/1b-null mice had increased levels of carboxylesterase (Ces) enzymes, which caused higher conversion of irinotecan to SN-38 in plasma, potentially complicating pharmacokinetic analyses. Ces inhibitors blocked this increased conversion. Interestingly, liver-specific humanized OATP1B1 and OATP1B3 transgenic mice had normalized hepatic expression of Ces1 genes. While irinotecan liver-to-plasma ratios in these humanized mice were similar to those in Oatp1a/1b-null mice, SN-38 liver-to-plasma ratios returned to wild-type levels, suggesting that human OATP1B proteins mediate SN-38, but not irinotecan uptake in vivo. Upon direct administration of SN-38 (1 mg/kg, i.v.), Oatp1a/1b-null mice had increased SN-38 plasma levels, lower liver concentrations, and decreased cumulative biliary excretion of SN-38. Mouse Oatp1a/1b transporters have a role in the plasma clearance of irinotecan and SN-38, whereas human OATP1B transporters may only affect SN-38 disposition. Oatp1a/1b-null mice have increased expression and activity of Ces1 enzymes, whereas humanized mice provide a rescue of this phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app