JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activation of p38 mitogen-activated protein kinase in ovalbumin and ozone-induced mouse model of asthma.

BACKGROUND AND OBJECTIVE: Ozone exposure worsens the development of allergen-induced asthma. The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in the development of the inflammatory response, airway hyperresponsiveness (AHR) and airway remodelling. In this study, the role of the p38 MAPK pathway on the effects of chronic ozone exposure in ovalbumin (OVA)-sensitized and -challenged mice was investigated.

METHODS: Mice were sensitized and challenged with OVA followed by ozone exposure. Dexamethasone (Dex) and SB239063, a p38 MAPK inhibitor, were used as preventive treatment.

RESULTS: Compared with OVA-challenged mice, ozone exposure of OVA-challenged mice led to enhanced recruitment of inflammatory cells in bronchoalveolar lavage fluid, increases in inflammation scores, collagen accumulation, bronchial wall thickness and messenger RNA levels of inflammatory cytokines, along with activation of p38 MAPK/HSP27 and downregulation of MAPK phosphatase-1 (MKP-1) in the lung tissue. Dex treatment partially attenuated lung inflammation, while the cotreatment of Dex and SB239063 effectively reduced lung inflammation, inhibited airway remodelling, inactivated p38 MAPK/HSP27 and upregulated MKP-1 in the lung tissue.

CONCLUSIONS: Ozone exposure aggravated airway inflammation, airway remodelling, activation of p38 MAPK and downregulation of MKP-1 in OVA-sensitized and -challenged mice, which was ineffectively controlled by corticosteroids. p38 MAPK activation is a likely pathway involved in corticosteroid insensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app