COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Physiological testosterone levels enhance chondrogenic extracellular matrix synthesis by male intervertebral disc cells in vitro, but not by mesenchymal stem cells.

BACKGROUND CONTEXT: Testosterone (T) is a hormone and regulator involved in the processes of development of the organism (ie, promoting development of bone and muscle mass). Although T effects on the mesenchyme-derived muscle, bone, and adipose tissues are well studied, T effects on intervertebral disc (IVD) have not been reported.

PURPOSE: The aim was to test the following hypothesis: if a physiological concentration of T (∼30 nM) can improve in vitro chondrogenesis of human IVD cells and mesenchymal stem cells (MSCs).

STUDY DESIGN/SETTING: Human IVD cells and MSCs were differentiated to chondrogenic lineage on gelatin scaffolds for 4 weeks, in the presence or absence of T.

METHODS: Chondrogenesis was assessed by cell viability, by measuring gene expression with quantitative polymerase chain reaction and extracellular matrix (ECM) accumulation with immunoblotting, immunohistochemical, and biochemical methods.

RESULTS: Supplementation of T to chondrogenic culture did not affect viability. In male IVD cells, T had a beneficial impact on chondrogenesis, particularly in nucleus pulposus cells, demonstrated by an increased expression of aggrecan, collagen type I, and especially collagen type II. Conversely, T had no effects on chondrogenesis of female IVD cells or MSCs from both genders. A gene expression array of transforming growth factor β/bone morphogenetic protein signaling cascade showed that in male IVD cells, T promoted a stable general but nonsignificant increase in gene expression. Furthermore, aromatase inhibitor anastrazole repressed the effect of T on ECM expression by IVD cells. The results suggest that T increased ECM accumulation in male IVD cells in combination with its conversion to estradiol by the enzyme aromatase.

CONCLUSIONS: We demonstrated that T effectively enhances in vitro chondrogenesis in male IVD cells, rising the interest in the possible role of sex hormones in IVD degeneration. Nevertheless, T does not affect chondrogenic differentiation of female IVD cells and MSCs from both genders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app