JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature.

The physiological responses of C4 species to simultaneous water deficit and low substrate temperature are poorly understood, as well as the recovery capacity. This study investigated whether the effect of these abiotic stressors is cultivar-dependent. The differential responses of drought-resistant (IACSP94-2094) and drought-sensitive (IACSP97-7065) sugarcane cultivars were characterized to assess the relationship between photosynthesis and antioxidant protection by APX and SOD isoforms under stress conditions. Our results show that drought alone or combined with low root temperature led to excessive energetic pressure at the PSII level. Heat dissipation was increased in both genotypes, but the high antioxidant capacity due to higher SOD and APX activities was genotype-dependent and it operated better in the drought-resistant genotype. High SOD and APX activities were associated with a rapid recovery of photosynthesis in IACSP94-2094 plants after drought and low substrate temperature alone or simultaneously.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app