Add like
Add dislike
Add to saved papers

A maturase-like coding sequence downstream of the OXI2 gene of yeast mitochondrial DNA is interrupted by two GC clusters and a putative end-of-messenger signal.

By completing and correcting the sequence of a 1.8 kb DNA segment downstream of the oxi2 gene of Saccharomyces cerevisiae, a long, potentially coding sequence ("RF2") has been identified. The sequence is rather closely related to the RF1 open reading frame, downstream of the oxil gene, and, further, to the major family of intronic open reading frames. The RF2 open reading frame is not continuous, however, for it is interrupted by two GC clusters, both of which ultimately result in a -1 frameshift. Comparison with RF1 reveals a third insertion. This is centered on an oligo nucleotide, AATAATATTCTTA, which is found (sometimes in a slightly modified form) downstream of ten proven or suspected protein coding genes, including RF1 and RF2, and is known to terminate the apocytochrome b messenger RNA. It is suggested from the known distribution of this putative "end-of-messenger" signal, that it could play an essential part in controlling the expression of several minor proteins, both intronic and non-intronic. The possibility of the RF2 sequence being functional in spite of its interruptions is also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app