Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mouse dental pulp stem cells support human umbilical cord blood-derived hematopoietic stem/progenitor cells in vitro.

It is well documented that specialized mesenchymal stem/stromal cells (MSCs) constitute the hematopoietic stem cell (HSC) niche in the bone marrow (BM), and these MSCs support/maintain the HSCs in an undifferentiated state. A number of studies have demonstrated that BM-derived MSCs (BM-MSCs) can support HSCs in vitro. However, it remains unclear whether nonhematopoietic tissue-derived MSC-like cells, such as dental pulp stem cells (DPSCs), have the ability to support HSCs. In this study, we prospectively isolated DPSCs from mouse mandibular incisors by fluorescence-activated cell sorting (FACS) using BM-MSC markers, such as PDGFRα and Sca-1. The PDGFRα and Sca-1 double-positive DPSCs and BM-MSCs showed similar morphologies and expression patterns of MSC markers. The ability of the DPSCs to support hematopoietic stem/progenitor cells (HSPCs) was then analyzed by an in vitro coculture system. Moreover, their HSC-supporting activity was evaluated by in vivo xenotransplantation assays using NOD/Shi-scid/IL-2Rγc(null) (NOG) mice. Interestingly, the DPSCs supported human cord blood (CB)-derived CD34-positive (CD34(+)), as well as CD34-negative (CD34(-)), HSCs. The supporting activities of DPSCs for human CB-derived CD34(+) and CD34(-) HSCs were comparable to those of BM-MSCs. The results of the present study demonstrated, for the first time, that prospectively isolated murine PDGFRα and Sca-1 double-positive DPSCs could support primitive human CD34(+) and CD34(-) HSCs in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app