Add like
Add dislike
Add to saved papers

Androgen receptor decreases CMYC and KRAS expression by upregulating let-7a expression in ER-, PR-, AR+ breast cancer.

It is generally known that the decision to use anti-estrogen therapy is based on the expression of estrogen and progesterone receptors in breast cancers. Recent studies have shown that androgen receptor (AR) is frequently expressed in ER-, PR- breast cancer and plays an important role in the prognosis of breast cancer patients. Furthermore, AR can increase the global expression of microRNAs, post-transcriptional gene regulators that play a crucial role in the initiation and progression of breast cancer. In this study, we investigated the functions and relations of AR, related miRNAs and target proteins in ER-, PR-, AR+ breast cancer. The results showed that androgen-induced AR activating signal directly upregulates let-7a expression, downregulates CMYC and KRAS protein expression, and inhibits cell proliferation in ER-, PR-, AR+ breast cancer cells. Overexpression of let-7a inhibits cell proliferation and downregulates CMYC and KRAS protein expression, whereas inhibition of let-7a expression by specific antisense oligonucleo-tides increases cell growth and upregulates CMYC and KRAS protein expression. We performed in situ hybridization for let-7a and immunohistochemical staining for CMYC and KRAS using sequential sections obtained from surgically-resected breast cancer tissues and observed an inverse correlation between the staining pattern of let-7a and its target proteins. Androgen-induced AR activating signal upregulates let-7a that targets CMYC and KRAS and contributes to ER-, PR-, AR+ breast cancer pathogenesis. Elucidation of this pathway will help develop new therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app