JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Near-infrared fluorescence imaging of murine atherosclerosis using an oxidized low density lipoprotein-targeted fluorochrome.

The aim of this study was to explore the feasibility of detecting plaques using an NIR797 fluorochrome-labeled, anti-oxLDL antibody (anti-oxLDL-NIR797) and near-infrared fluorescence (NIRF) imaging in a murine model of atherosclerosis. Anti-mouse oxLDL polyclonal antibodies were conjugated to NIR797 dyes to synthesis oxLDL-targeted NIRF probe. In situ and ex vivo NIRF imaging of the high-cholesterol diet-induced atherosclerotic lesions of apoE-/- mice (baseline) as well as ex vivo NIRF imaging in the progression and regression group (without or with atorvastatin treatment for another 8 weeks) were performed 24 h after an intravenous injection of 1 mg/kg of anti-oxLDL-NIR797, while phosphate-buffered saline (PBS) was used for the controls. The plaque areas were investigated using Oil Red O (ORO) staining. Aortas isolated from the apoE-/- mice 24 h post-injection exhibited a selective, strong, heterogeneous NIRF signal enhancement in the aortic root, arch, and bifurcation, whereas the PBS and competitive inhibition groups had limited NIRF signal changes (p < 0.05). There was a significant correlation between ORO staining and NIRF in the atherosclerotic aortas that received anti-oxLDL-NIR797. Immunofluorescence studies confirmed the colocalization of the oxLDL/macrophages and NIR797 fluorochromes. Furthermore, the atherosclerotic lesions of atorvastatin-treated mice showed reduced anti-oxLDL-NIR797 uptake and oxLDL expression. These results indicate that NIRF plaque imaging is feasible with an oxLDL-targeted NIRF probe. Thus, oxLDL-based molecular imaging of atherosclerotic plaques is feasible and may provide important methods for characterizing vulnerable plaques and monitoring the response to therapeutic interventions for atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app