Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Central and peripheral adjustments during high-intensity exercise following cold water immersion.

PURPOSE: We investigated the acute effects of cold water immersion (CWI) or passive recovery (PAS) on physiological responses during high-intensity interval training (HIIT).

METHODS: In a crossover design, 14 cyclists completed 2 HIIT sessions (HIIT1 and HIIT2) separated by 30 min. Between HIIT sessions, they stood in cold water (10 °C) up to their umbilicus, or at room temperature (27 °C) for 5 min. The natural logarithm of square-root of mean squared differences of successive R-R intervals (ln rMSSD) was assessed pre- and post-HIIT1 and HIIT2. Stroke volume (SV), cardiac output (Q), O2 uptake (VO2), total muscle hemoglobin (t Hb) and oxygenation of the vastus lateralis were recorded (using near infrared spectroscopy); heart rate, Q, and VO2 on-kinetics (i.e., mean response time, MRT), muscle de-oxygenation rate, and anaerobic contribution to exercise were calculated for HIIT1 and HIIT2.

RESULTS: ln rMSSD was likely higher [between-trial difference (90% confidence interval) [+13.2% (3.3; 24.0)] after CWI compared with PAS. CWI also likely increased SV [+5.9% (-0.1; 12.1)], possibly increased Q [+4.4% (-1.0; 10.3)], possibly slowed Q MRT [+18.3% (-4.1; 46.0)], very likely slowed VO2 MRT [+16.5% (5.8; 28.4)], and likely increased the anaerobic contribution to exercise [+9.7% (-1.7; 22.5)].

CONCLUSION: CWI between HIIT slowed VO2 on-kinetics, leading to increased anaerobic contribution during HIIT2. This detrimental effect of CWI was likely related to peripheral adjustments, because the slowing of VO2 on-kinetics was twofold greater than that of central delivery of O2 (i.e., Q). CWI has detrimental effects on high-intensity aerobic exercise performance that persist for ≥ 45 min.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app