JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Increased CXCL10 expression in nasal fibroblasts from patients with refractory chronic rhinosinusitis and asthma.

BACKGROUND: Chronic rhinosinusitis (CRS) is characterized by local inflammation of the sinonasal tissues. CRS patients with nasal polyps and asthma often develop acute exacerbation of sinonasal symptoms after upper respiratory tract infections. However, the influence of concomitant asthma on the nasal immune response to viral infection remains unclear.

METHODS: Specimens of nasal polyp and mucosal tissues were obtained from 3 groups of CRS patients (n = 14 per group): 1) patients without asthma (CRS group), 2) patients with aspirin-tolerant asthma (ATA group), and 3) patients with aspirin-intolerant asthma (AIA group). Nasal fibroblasts isolated from the specimens were stimulated with poly I:C. CXCL10 expression was analyzed by the quantitative real-time polymerase chain reaction and enzyme-linked immunoadsorbent assay. Biopsy specimens from CRS patients without asthma were subjected to immunohistochemistry for detection of T-bet and GATA-3 expression in CD3+ T cells by double labeling.

RESULTS: Nasal fibroblasts from the ATA and AIA groups showed significantly enhanced expression of CXCL10 mRNA and protein after poly I:C stimulation compared with cells from the CRS group and the control group (normal nasal mucosa). In addition to T helper (Th)2 cells, there was more abundant infiltration of Th1 cells into tissues from the AIA and ATA groups.

CONCLUSIONS: Our findings suggest that CRS associated with asthma may become intractable through the over-production of CXCL10 in response to viral infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app