JOURNAL ARTICLE

Diabetes impairs an interleukin-1β-dependent pathway that enhances neurite outgrowth through JAK/STAT3 modulation of mitochondrial bioenergetics in adult sensory neurons

Ali Saleh, Subir K Roy Chowdhury, Darrell R Smith, Savitha Balakrishnan, Lori Tessler, Emily Schartner, Andre Bilodeau, Randy Van Der Ploeg, Paul Fernyhough
Molecular Brain 2013, 6: 45
24152426

BACKGROUND: A luminex-based screen of cytokine expression in dorsal root ganglia (DRG) and nerve of type 1 diabetic rodents revealed interleukin-1 (IL-1α) and IL-1β to be significantly depressed. We, therefore, tested the hypothesis that impaired IL-1α and IL-1β expression in DRG may contribute to aberrant axon regeneration and plasticity seen in diabetic sensory neuropathy. In addition, we determined if these cytokines could optimize mitochondrial bioenergetics since mitochondrial dysfunction is a key etiological factor in diabetic neuropathy.

RESULTS: Cytokines IL-1α and IL-1β were reduced 2-fold (p<0.05) in DRG and/or nerve of 2 and 5 month streptozotocin (STZ)-diabetic rats. IL-2 and IL-10 were unchanged. IL-1α and IL-1β induced similar 2 to 3-fold increases in neurite outgrowth in cultures derived from control or diabetic rats (p<0.05). STAT3 phosphorylation on Tyr705 or Ser727 was depressed in DRG from STZ-diabetic mice and treatment of cultures derived from STZ-diabetic rats with IL-1β for 30 min raised phosphorylation of STAT3 on Tyr705 and Ser727 by 1.5 to 2-fold (p<0.05). shRNA-based or AG490 inhibition of STAT3 activity or shRNA blockade of endogenous IL-1β expression completely blocked neurite outgrowth. Cultured neurons derived from STZ-diabetic mice were treated for 24 hr with IL-1β and maximal oxygen consumption rate and spare respiratory capacity, both key measures of bioenergetic fidelity that were depressed in diabetic compared with control neurons, were enhanced 2-fold. This effect was blocked by AG490.

CONCLUSIONS: Endogenous synthesis of IL-1β is diminished in nerve tissue in type 1 diabetes and we propose this defect triggers reduced STAT3 signaling and mitochondrial function leading to sup-optimal axonal regeneration and plasticity.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24152426
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"