Add like
Add dislike
Add to saved papers

Electronic structures and magnetism of SrFeO2 under pressure: a first-principles study.

Inorganic Chemistry 2013 November 5
We have studied the electronic structures and magnetism of SrFeO2 under pressure by first-principles calculations in the framework of density functional theory (DFT) with GGA+U and HSE06 hybrid functionals, respectively. The pressure-induced spin transition from S = 2 to S = 1 and the antiferromagnetic-ferromagnetic (AFM-FM) transition observed in experiment are well reproduced by taking the site repulsion U and its pressure dependence into account. The electronic structure and its change with the pressure can be qualitatively understood in an ionic model together with the hybridization effects between the Fe 3d and O 2p states. It is found that the pressure leads to a change in Fe 3d electronic configuration from (d(z(2)))(2)(d(xz)d(yz))(2)(d(xy))(1)(d(x(2)-y(2)))(1) under ambient conditions to (d(z(2)))(2)(d(xz)d(yz))(3)(d(xy))(1)(d(x(2)-y(2)))(0) at high pressure. As a result, the spin state transits from S = 2 to S = 1 and both the antiferromagnetic intralayer Fe-O-Fe superexchange interaction and the interlayer Fe-Fe direction exchange coupling at ambient pressure become ferromagnetic at high pressure according to the Goodenough-Kanamori (G-K) rules. Additionally, our calculations predict another spin transition from S = 1 to S = 0 at pressures of about 220 GPa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app