Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Salicylate prevents virus-induced type 1 diabetes in the BBDR rat.

Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR) rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID), to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV) and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist) develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1β, IL-6, IFN-γ, IL-12, and haptoglobin (an acute phase protein) in KRV+pIC treated rats. Significant elevations of IL-1β and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1β, IL-6, IFN-γ and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app