JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction.

Nanoscale 2013 December 22
Oxygen reduction reaction (ORR) is an important reaction in energy conversion systems such as fuel cells and metal-air batteries. Carbon nanomaterials doped with heteroatoms are highly attractive materials for use as electrocatalysts by virtue of their excellent electrocatalytic activity, high conductivity, and large surface area. This study reports the synthesis of highly efficient electrocatalysts based on heteroatom-doped graphene nanosheets prepared through covalent functionalization using various small organic molecules and a subsequent thermal treatment. A series of nitrogen-doped reduced graphene oxide (NRGOn) nanosheets exhibited varying degrees and configurations of nitrogen atoms within the graphitic framework depending on the type of precursors used. On the basis of the rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) experiments, NRGO3, with a high degree of pyridinic-N content, displayed the desired one-step, quasi-four-electron transfer pathway during ORR, similar to commercial Pt/C. We also demonstrated the potential of covalent functionalization of sulfur and boron-doped graphene nanosheets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app