Add like
Add dislike
Add to saved papers

Listeria monocytogenes (Lm)-LLO immunotherapies reduce the immunosuppressive activity of myeloid-derived suppressor cells and regulatory T cells in the tumor microenvironment.

Myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) are major components of the immune suppressive cells that potentially limit the effectiveness of an immunotherapy-based treatment. Both of these suppressive cell types have been shown to expand in tumor models and promote T-cell dysfunction that in turn favors tumor progression. This study demonstrates that Listeria monocytogenes (Lm)-LLO immunotherapies effect on the suppressive ability of MDSC and Treg in the tumor microenvironment (TME), resulting in a loss in the ability of these cells to suppress T cells. This alteration of immunosuppression in the TME was an inherent property of all Lm-LLO immunotherapies tested and was independent of the tumor model. The virtually total loss in the suppressive ability of these cells in the TME was linked to the reduction in the expression of arginase I in MDSC and IL-10 in Treg. The results presented here provide insight into a novel mechanism of Lm-LLO immunotherapies that potentially contributes to therapeutic antitumor responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app