JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Acute exposure of beta-cells to troglitazone decreases insulin hypersecretion via activating AMPK.

BACKGROUND: It has been recognized that insulin hypersecretion can lead to the development of insulin resistance and type 2 diabetes mellitus. There is substantial evidence demonstrating that thiazolidinediones are able to delay and prevent the progression of pancreatic β-cell dysfunction. However, the mechanism underlying the protective effect of thiazolidinediones on β-cell function remains elusive.

METHODS: We synchronously detected the effects of troglitazone on insulin secretion and AMP-activated protein kinase (AMPK) activity under various conditions in isolated rat islets and MIN6 cells.

RESULTS: Long-term exposure to high glucose stimulated insulin hypersecretion and inhibited AMPK activity in rat islets. Troglitazone-suppressed insulin hypersecretion was closely related to the activation of AMPK. This action was most prominent at the moderate concentration of glucose. Glucose-stimulated insulin secretion was decreased by long-term troglitazone treatment, but significantly increased after the drug withdrawal. Compound C, an AMPK inhibitor, reversed troglitazone-suppressed insulin secretion in MIN6 cells and rat islets. Knockdown of AMPKα2 showed a similar result. In MIN6 cells, troglitazone blocked high glucose-closed ATP-sensitive K(+) (KATP) channel and decreased membrane potential, along with increased voltage-dependent potassium channel currents. Troglitazone suppressed intracellular Ca(2+) response to high glucose, which was abolished by treatment with compound C.

CONCLUSION: Our results suggest that troglitazone provides β-cell "a rest" through activating AMPK and inhibiting insulin hypersecretion, and thus restores its response to glucose.

GENERAL SIGNIFICANCE: These data support that AMPK activation may be an important mechanism for thiazolidinediones preserving β-cell function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app