A novel angiotensin converting enzyme inhibitory peptide derived from proteolytic digest of Chinese soft-shelled turtle egg white proteins

Reynetha D S Rawendra, Aisha, Chi-I Chang, Aulanni'am, Ho-Hsien Chen, Tzou-Chi Huang, Jue-Liang Hsu
Journal of Proteomics 2013 December 6, 94: 359-69

UNLABELLED: In this study, soft-shelled turtle (Pelodiscus sinensis) egg white (SSTEW) proteins were digested by thermolysin and the resulting small peptides were further fractionated by reverse phase chromatography. Peptides with angiotensin I-converting enzyme inhibitory (ACEI) activity from these fractions were screened. A lysozyme-derived peptide, IW-11, from the fraction with the most effective ACEI was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and its purified form showed effective ACEI activity in vitro (IC50=4.39±0.31μM). The Lineweaver-Burk plots indicated that the inhibition towards ACE caused by this peptide is a competitive inhibition. The molecular docking study further revealed that the ACEI activity of IW-11 is mainly attributed to the formation of hydrogen bonds between the N-terminal residue of IW-11 and the S1 pocket (Ala354 and Tyr523) and the S2' region (His513 and His353) of ACE. Moreover, the digestion parameters were further optimized and the target peptide (82% purity) was readily obtained (15% yield) without any cumbersome purification procedure. Notably, lysozyme C is the most abundant protein in SSTEW, which implies that an efficient production of this ACEI peptide from SSTEW is promising.

BIOLOGICAL SIGNIFICANCE: Inhibition of ACE has proven to be an effective strategy in prevention and treatment of hypertension and related diseases. Unlike typical synthetic ACE inhibitors which exert well described side effects, food-derived peptides with ACE inhibitory activity may be safer alternatives for hypertension treatment. In this study, we comprehensively identified peptides derived from SSTEW digest using a proteomic approach. IW-11, which is derived from lysozyme, the most abundant protein in SSTEW, showed remarkable inhibition towards ACE. This peptide has been demonstrated to have a competitive inhibitory property which is able to bind to ACE active site and found to be a true inhibitor against ACE according to Lineweaver-Burk plots. Using an optimized thermolysin condition, IW-11 can be readily obtained without any complex purification step, which will benefit its further application to prevention or treatment of hypertension.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"