IL-4 blocks TH1-polarizing/inflammatory cytokine gene expression during monocyte-derived dendritic cell differentiation through histone hypoacetylation

María López-Bravo, María Minguito de la Escalera, Pilar M Domínguez, Leticia González-Cintado, Carlos del Fresno, Pilar Martín, Gloria Martínez del Hoyo, Carlos Ardavín
Journal of Allergy and Clinical Immunology 2013, 132 (6): 1409-19

BACKGROUND: Whereas recent research has characterized the mechanism by which dendritic cells (DCs) induce T(H)1/T(H)17 responses, the functional specialization enabling DCs to polarize T(H)2 responses remains undefined. Because IL-4 is essential during T(H)2 responses not only by acting on CD4(+) T cells through the activation of GATA-3 but also by regulating IgE class-switching, epithelial cell permeability, and muscle contractility, we hypothesized that IL-4 could also have a role in the conditioning of DCs during T(H)2 responses.

OBJECTIVE: We sought to analyze whether IL-4 exerts an immunomodulatory function on DCs during their differentiation, leading to their functional specialization for the induction of T(H)2 responses.

METHODS: Monocyte-derived DCs (moDCs) conditioned by IL-4 during their differentiation (IL-4-conditioned moDCs [IL-4-moDCs]) were analyzed for T(H)1-polarizing/inflammatory cytokine production in response to Toll-like receptor stimulation. The acetylation level of the promoters of the genes encoding these cytokines was analyzed by using chromatin immunoprecipitation. Gene expression profiling of IL-4-moDCs was defined by using mouse genome microarrays. IL-4-moDCs were tested for their capacity to induce house dust mite-mediated allergic reactions.

RESULTS: Our data suggest that IL-4 inhibits T(H)1-polarizing/inflammatory cytokine gene expression on IL-4-moDCs through the deacetylation of the promoters of these genes, leading to their transcriptional repression. Microarray analyses confirmed that IL-4 upregulated T(H)2-related genes as eosinophil-associated ribonucleases, eosinophil/basophil chemokines, and M2 genes. IL-4 licensed moDCs for the induction of T(H)2 responses, causing house dust mite-mediated allergic airway inflammation.

CONCLUSION: This study describes a new role for IL-4 by demonstrating that moDCs are conditioned by IL-4 for the induction of T(H)2 responses by blocking T(H)1-polarizing/inflammatory cytokine production through histone hypoacetylation and upregulating T(H)2-related genes.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"