Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway.

The apoptotic or necrotic death of renal tubule epithelial cells is the main pathogenesis of renal ischemia-reperfusion-induced acute kidney injury (AKI). Pyroptosis is a programmed cell death pathway that depends on the activation of the caspase cascade and IL-1 cytokine family members. However, the role of pyroptosis in AKI induced by ischemia-reperfusion remains unclear. In this study, we found that the levels of the pyroptosis-related proteins, including caspase-1, caspase-11, and IL-1β, were significantly increased after 6 h of renal ischemia-reperfusion injury (IRI) and peaked at 12 h after IRI. Enhanced pyroptosis was accompanied by elevated renal structural and functional injury. Similarly, hypoxia-reoxygenation injury (HRI) also induced pyroptosis in renal tubule epithelial NRK-52E cells, which was characterized by increased pore formation and elevated lactate dehydrogenase release. In addition, obvious upregulation of the endoplasmic reticulum (ER) stress biomarkers glucose-regulated protein 78 and C/EBP homologous protein (CHOP) preceded the incidence of pyroptosis in cells treated with IRI or HRI. Pretreatment with a low dose of tunicamycin, an inducer of ER stress, relieved IRI-induced pyroptosis and renal tissue injury. Silencing of CHOP by small interfering RNA significantly decreased HRI-induced pyroptosis of NRK-52E cells, as evidenced by reduced caspase-11 activity and IL-1β generation. Therefore, we conclude that pyroptosis of renal tubule epithelial cells is a key event during IRI and that CHOP-caspase-11 triggered by overactivated ER stress may be an essential pathway involved in pyroptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app