JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems.

This paper studies an adaptive tracking control for a class of nonlinear stochastic systems with unknown functions. The considered systems are in the nonaffine pure-feedback form, and it is the first to control this class of systems with stochastic disturbances. The fuzzy-neural networks are used to approximate unknown functions. Based on the backstepping design technique, the controllers and the adaptation laws are obtained. Compared to most of the existing stochastic systems, the proposed control algorithm has fewer adjustable parameters and thus, it can reduce online computation load. By using Lyapunov analysis, it is proven that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded in probability and the system output tracks the reference signal to a bounded compact set. The simulation example is given to illustrate the effectiveness of the proposed control algorithm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app