Add like
Add dislike
Add to saved papers

Mitigation of CO poisoning on functionalized Pt-TiN surfaces.

It has been previously reported that the system of single Pt atoms embedded in N-vacancy (V(N)) sites on the TiN(100) surface (Pt-TiN) could be a promising catalyst for proton exchange membrane fuel cells (PEM FCs). The adsorption of molecules on Pt-TiN is an important step, when it is incorporated as the anode or cathode of PEM FCs. Utilizing first principles calculations based on density functional theory, systematic investigations are performed on the adsorption of several atomic and molecular species on the Pt-TiN system, as well as the co-adsorption of them. The favorable binding sites and adsorption energies of several molecular species, namely carbon dioxide (CO2), carbon monoxide (CO), oxygen (O2), hydrogen (H2), hydroxyl (OH), an oxygen atom (O), and a hydrogen atom (H), are explored. For each, the adsorption energy and preferred binding site are identified and the vibrational frequencies calculated. It is found that CO2, CO and H prefer the Pt top site while OH and O favorably adsorb on the Ti top site. When CO and OH are co-adsorbed on the Pt-TiN(100) surface, OH weakens the adsorption of CO. The weakening effect is enhanced by increasing the coverage of OH. A similar behavior occurs for H and OH co-adsorption on the Pt-TiN(100) surface. Because co-adsorption with OH and H species weakens the adsorption of CO on Pt-TiN, it is expected that the acid and base conditions in PEM FCs could mitigate CO poisoning on functionalized Pt-TiN surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app