Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Germination of salt-stressed seeds as related to the ethylene biosynthesis ability in three Stylosanthes species.

Stylosanthes, a genus of tropical forage legume, is known to exhibit good persistence in saline soils, yet mechanisms for regulation of seed germination under salt stress are poorly understood. This study was carried out to evaluate the mode of action of salt stress on seed germination of Stylosanthes. 1-Aminocyclopropane-1-carboxylic acid (ACC) increased ethylene biosynthesis and germination of NaCl-inhibited seeds in a dose-dependent manner. Contents of ACC and germination of Stylosanthes humilis seeds increased following transfer from NaCl solution to deionised water, but not after transfer to l-α-(2-aminoethoxyvinyl)-glycine (AVG) solution, an inhibitor of ethylene biosynthesis. Ethylene biosynthesis was much larger in NaCl-treated seeds of Stylosanthes guianensis than in seeds of S. humilis and Stylosanthes capitata, a fact which was reflected in higher germination rates. S. guianensis seedlings also displayed higher growth and survival rates than S. humilis and S. capitata under salt stress. Moreover, smaller ACC levels, as well as reduced ethylene biosynthesis of S. capitata seeds were accompanied by lower germination under salt stress. In addition, S. capitata seedlings treated with NaCl solutions exhibited relatively lower growth and survival rates in comparison with S. humilis and S. guianensis. Thus, different abilities to synthesize ethylene by S. guianensis, S. humilis and S. capitata seeds explain the differences in tolerance to salt stress of the three species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app