Journal Article
Review
Add like
Add dislike
Add to saved papers

Unravelling mitochondrial pathways to Parkinson's disease.

Mitochondria are essential for cellular function due to their role in ATP production, calcium homeostasis and apoptotic signalling. Neurons are heavily reliant on mitochondrial integrity for their complex signalling, plasticity and excitability properties, and to ensure cell survival over decades. The maintenance of a pool of healthy mitochondria that can meet the bioenergetic demands of a neuron, is therefore of critical importance; this is achieved by maintaining a careful balance between mitochondrial biogenesis, mitochondrial trafficking, mitochondrial dynamics and mitophagy. The molecular mechanisms that underlie these processes are gradually being elucidated. It is widely recognized that mitochondrial dysfunction occurs in many neurodegenerative diseases, including Parkinson's disease. Mitochondrial dysfunction in the form of reduced bioenergetic capacity, increased oxidative stress and reduced resistance to stress, is observed in several Parkinson's disease models. However, identification of the recessive genes implicated in Parkinson's disease has revealed a common pathway involving mitochondrial dynamics, transport, turnover and mitophagy. This body of work has led to the hypothesis that the homeostatic mechanisms that ensure a healthy mitochondrial pool are key to neuronal function and integrity. In this paradigm, impaired mitochondrial dynamics and clearance result in the accumulation of damaged and dysfunctional mitochondria, which may directly induce neuronal dysfunction and death. In this review, we consider the mechanisms by which mitochondrial dysfunction may lead to neurodegeneration. In particular, we focus on the mechanisms that underlie mitochondrial homeostasis, and discuss their importance in neuronal integrity and neurodegeneration in Parkinson's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app