We have located links that may give you full text access.
JOURNAL ARTICLE
REVIEW
The Warburg effect then and now: from cancer to inflammatory diseases.
Inflammatory immune cells, when activated, display much the same metabolic profile as a glycolytic tumor cell. This involves a shift in metabolism away from oxidative phosphorylation towards aerobic glycolysis, a phenomenon known as the Warburg effect. The result of this change in macrophages is to rapidly provide ATP and metabolic intermediates for the biosynthesis of immune and inflammatory proteins. In addition, a rise in certain tricarboxylic acid cycle intermediates occurs notably in citrate for lipid biosynthesis, and succinate, which activates the transcription factor Hypoxia-inducible factor. In this review we take a look at the emerging evidence for a role for the Warburg effect in the immune and inflammatory responses. The reprogramming of metabolic pathways in macrophages, dendritic cells, and T cells could have relevance in the pathogenesis of inflammatory and metabolic diseases and might provide novel therapeutic strategies.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app