CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Chediak-Higashi syndrome: description of two novel homozygous missense mutations causing divergent clinical phenotype.

Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disease resulting from mutations in the LYST/CHS1 gene, which encodes for a 429 kDa protein, CHS1/LYST, that regulates vesicle trafficking and determines the size of lysosomes and other organelles. To date, 60 different mutations have been characterized, and a reasonably straightforward phenotype-genotype correlation has been suggested. We describe two patients on opposite ends of the CHS clinical spectrum with novel missense mutations. We characterized these patients in terms of their mutations, protein localization and expression, mRNA stability, and electrostatic potential. Patient 1 is the first report of a severe early-onset CHS with a homozygous missense mutation (c.11362 G>A, p.G3725R) in the LYST/CHS1 gene. This molecular change results in a reduction at the CHS1 protein level, not due to an mRNA effect, but maybe a consequence of both, a change in the structure of the protein and most likely attributable to the remarkable serious perturbation in the electrostatic potential. Patient 2, who exhibited the adolescence form of the disease, was found to be homozygous for a novel missense mutation c.961 T>C, p.C258R, which seemed to have minor effect on the structure of the CHS1/LYST protein. Reexamining accepted premises of missense mutant alleles being reported among patients with clinically mild forms of the disorder should be carried out, and attempts to link genotype and clinical phenotype require identifying the actual molecular effect of the mutation. Early and accurate diagnosis of the severity of the disease is extremely important to early differentiate patients who would benefit from premature enrollment into a transplantation protocol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app