COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparison of simulated and clinical intracardiac electrograms.

Intracardiac electrograms are the key in understanding, interpretation and treatment of cardiac arrhythmias. However, electrogram morphologies are strongly variable due to catheter position, orientation and contact. Simulations of intracardiac electrograms can improve comprehension and quantification of influencing parameters and therefore reduce misinterpretations. In this study simulated intracardiac electrograms are analyzed regarding tilt angles of the catheter relative to the propagation direction, electrode tissue distances as well as clinical filter settings. Catheter signals are computed on a realistic 3D catheter geometry using bidomain simulations of cardiac electrophysiology. Thereby high conductivities of the catheter electrodes are taken into account. For validation, simulated electrograms are compared with in vivo electrograms recorded during an EP-study with direct annotation of catheter orientation and tissue contact. Good agreement was reached regarding timing and signal width of simulated and measured electrograms. Correlation was 0.92±0.07 for bipolar, 0.92±0.05 for unipolar distal and 0.80 ± 0.12 for unipolar proximal electrograms for different catheter orientations and locations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app