HMM-based snorer group recognition for Sleep Apnea diagnosis

Dulip L Herath, Udantha R Abeyratne, Craig Hukins
Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2013, 2013: 3961-4
This paper presents an Hidden Markov Models (HMM)-based snorer group recognition approach for Obstructive Sleep Apenea diagnosis. It models the spatio-temporal characteristics of different snorer groups belonging to different genders and AHI severity levels. The current experiment includes selecting snore data from subjects, identifying snorer groups based on gender and AHI values (AHI < 15 and AHI > 15), detecting snore episodes, MFCC computation, training and testing HMMs. A set of multi-level classification rules is employed for incremental diagnosis of OSA. The proposed method, with a relatively small data set, produces results nearly comparable to any existing methods with single feature class. It classifies snore episodes with 62.0% (male), 67.0% (female) and recognizes snorer group with 78.5% accuracy. The approach makes its diagnosis decision at 85.7% (sensitivity), 71.4% (specificity) for males and 85.7% (sensitivity and specificity) for females.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"