JOURNAL ARTICLE

Single-image noise level estimation for blind denoising

Xinhao Liu, Masayuki Tanaka, Masatoshi Okutomi
IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society 2013, 22 (12): 5226-37
24108465
Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them from practical use. Moreover, even with the given true noise level, these denoising algorithms still cannot achieve the best performance, especially for scenes with rich texture. In this paper, we propose a patch-based noise level estimation algorithm and suggest that the noise level parameter should be tuned according to the scene complexity. Our approach includes the process of selecting low-rank patches without high frequency components from a single noisy image. The selection is based on the gradients of the patches and their statistics. Then, the noise level is estimated from the selected patches using principal component analysis. Because the true noise level does not always provide the best performance for nonblind denoising algorithms, we further tune the noise level parameter for nonblind denoising. Experiments demonstrate that both the accuracy and stability are superior to the state of the art noise level estimation algorithm for various scenes and noise levels.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24108465
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"