Add like
Add dislike
Add to saved papers

Development and Validation of a Stability-Indicating RP-HPLC Method for the Determination of Process-Related Impurities and Degradation Products of Rabeprazole Sodium in Pharmaceutical Formulation.

The objective of the current study was to develop and validate a reversed-phase high-performance liquid chromatographic method for the quantitative determination of process-related impurities and degradation products of rabeprazole sodium in pharmaceutical formulation. Chromatographic separation was achieved on the Waters Symmetry Shield RP18 (250 mm × 4.6 mm) 5 μm column with a mobile phase containing a gradient mixture of solvent A (mixture of 0.025 M KH2PO4 buffer and 0.1% triethylamine in water, pH 6.4 and acetonitrile in the ratio of 90:10 v/v, respectively) and solvent B (mixture of acetonitrile and water in the ratio of 90:10 v/v, respectively). The mobile phase was delivered at a flow rate of 1.0 mL/min and with UV detection at 280 nm. Rabeprazole sodium was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Rabeprazole sodium was found to degrade significantly under acid hydrolysis, base hydrolysis, oxidative, and thermal degradation conditions. The degradation products were well-resolved from the main peak and its impurities, thus proving the stability-indicating power of the method. The mass balance was found to be in the range of 97.3-101.3% in all of the stressed conditions, thus proving the stability-indicating power of the method. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision, and robustness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app