Beneficial effects of pioglitazone on atrial structural and electrical remodeling in vitro cellular models

Jun Gu, Xu Liu, Quan-Xing Wang, Meng Guo, Fang Liu, Zhi-Ping Song, Da-Dong Zhang
Journal of Molecular and Cellular Cardiology 2013, 65: 1-8
It has been demonstrated that atrial remodeling contributes toward atrial fibrillation (AF) maintenance and angiotensin II (AngII) is involved in the pathogenesis of atrial remodeling. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have been shown to inhibit atrial remodeling. However, the underlying mechanisms are poorly understood. In the present study we investigated the regulating effects of PPAR-γ agonist on AngII-induced atrial structural and electrical remodeling in vitro cellular models. The effects of pioglitazone on AngII-induced connective tissue growth factor (CTGF) expression and cell proliferation were assessed in primary-cultured mouse atrial fibroblasts. The influences of pioglitazone on AngII-induced L-type calcium channel (ICa-L) α1c expression and current density were evaluated in atrial myocytes (HL-1). Pioglitazone attenuated AngII-induced CTGF expression and proliferation in atrial fibroblasts, and pioglitazone also inhibited the expression or phosphorylation of AngII-induced transforming growth factor-β1 (TGF-β1), tumor necrosis factor receptor associated factor 6 (TRAF6), TGF-β-associated kinase 1 (TAK1) and Smad2/3. In HL-1 cells, pioglitazone suppressed AngII-induced ICa-L α1c expression and current density as well as CAMP responsive element binding protein (CREB) phosphorylation. Besides, pioglitazone inhibited AngII-induced production of AngII type I receptor (AT1R) and downregulation of PPAR-γ in both atrial fibroblasts and HL-1 cells. In conclusion, Pioglitazone suppresses AngII-induced CTGF expression and proliferation in atrial fibroblasts, which might be at least in part related with its inhibitory effects on TGF-β1/Smad2/3 and TGF-β1/TRAF6/TAK1 signaling pathways. Moreover, pioglitazone also attenuates AngII-induced ICa-L remodeling in HL-1 cells, which might be at least in part associated with its inhibitory effect on CREB phosphorylation. It is suggested that PPAR-γ agonist may have potential applications in preventing atrial remodeling.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"