JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Chronic intermittent hypoxia increases sympathetic control of blood pressure: role of neuronal activity in the hypothalamic paraventricular nucleus.

Like humans with sleep apnea, rats exposed to chronic intermittent hypoxia (CIH) experience arterial hypoxemias and develop hypertension characterized by exaggerated sympathetic nerve activity (SNA). To gain insights into the poorly understood mechanisms that initiate sleep apnea/CIH-associated hypertension, experiments were performed in rats exposed to CIH for only 7 days. Compared with sham-treated normoxic control rats, CIH-exposed rats (n = 8 rats/group) had significantly increased hematocrit (P < 0.001) and mean arterial pressure (MAP; P < 0.05). Blockade of ganglionic transmission caused a significantly (P < 0.05) greater reduction of MAP in rats exposed to CIH than control rats (n = 8 rats/group), indicating a greater contribution of SNA in the support of MAP even at this early stage of CIH hypertension. Chemical inhibition of neuronal discharge in the hypothalamic paraventricular nucleus (PVN) (100 pmol muscimol) had no effect on renal SNA but reduced lumbar SNA (P < 0.005) and MAP (P < 0.05) more in CIH-exposed rats (n = 8) than control rats (n = 7), indicating that CIH increased the contribution of PVN neuronal activity in the support of lumbar SNA and MAP. Because CIH activates brain regions controlling body fluid homeostasis, the effects of internal carotid artery injection of hypertonic saline were tested and determined to increase lumbar SNA more (P < 0.05) in CIH-exposed rats than in control rats (n = 9 rats/group). We conclude that neurogenic mechanisms are activated early in the development of CIH hypertension such that elevated MAP relies on increased sympathetic tonus and ongoing PVN neuronal activity. The increased sensitivity of Na(+)/osmosensitive circuitry in CIH-exposed rats suggests that early neuroadaptive responses among body fluid regulatory neurons could contribute to the initiation of CIH hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app