COMPARATIVE STUDY
JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Non-invasive prenatal testing for fetal sex determination: is ultrasound still relevant?

Early prenatal diagnosis of fetal sex is necessary to optimize pregnancy management in families known to be at risk of some heritable disorders. The demonstration of cell-free fetal DNA (cffDNA) in the mother's blood has made it possible to identify Y chromosome sequences in maternal blood and to determine fetal sex noninvasively, during the first trimester. This procedure can significantly reduce the number of invasive procedures for women with fetuses at risk of sex-linked diseases and optimize the management of these pregnancies. Fetal sex can be diagnosed by ultrasound with the same sensitivity and specificity, but later in pregnancy. We performed a review of the published literature evaluating the use of cffDNA and ultrasound for prenatal determination of fetal sex during the first trimester of pregnancy. We present the feasibility of the two methods and their impact on clinical practice. We applied a sensitive search of multiple bibliographic databases including Pubmed (MEDLINE), EMBASE, the Cochrane Library and Web of science between 1998 and 2013. Sixteen reports of the determination of fetal sex in maternal blood and 13 reports of the determination by ultrasound met our inclusion criteria. We found a sensitivity and specificity of nearly 100% from 8 weeks of gestation for cffDNA and from 13 weeks of gestation for ultrasound respectively. Based on this review, we conclude that fetal sex can be determined with a high level of accuracy by analyzing cffDNA and at an earlier gestation than ultrasound. Ten years after the first feasibility study, the French National Authority for Health (HAS) released a technological assessment report on the determination of fetal sex in maternal blood, which has resulted in validating this test for reimbursement by the national health insurance fund for the following indications: X-linked recessive disease and congenital adrenal hyperplasia.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app