JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Overexpressed let-7a inhibits glioma cell malignancy by directly targeting K-ras, independently of PTEN.

Neuro-oncology 2013 November
BACKGROUND: Altered expression of micro(mi)RNAs has been shown to be associated with tumorigenesis and tumor progression. The expression of phosphatase and tensin homolog (PTEN) plays an important role in glioma and is regarded as a prognostic marker of glioma patients. The goal of this study was to investigate the function of lethal (let)-7a miRNA in glioma cell lines with different PTEN phenotypes.

METHODS: One hundred ninety-eight glioma tissues were used to profile miRNA expression.

RESULTS: Let-7a was shown to have lower expression in high-grade glioma than in low-grade glioma. Low expression of let-7a was correlated with poor prognosis of primary glioblastoma patients. We demonstrated that K-ras was a functional target for let-7a to induce cell cycle arrest, apoptosis, and inhibition of cell migration and invasion in vitro. Our further results showed no difference in malignancy inhibition induced by let-7a in 4 glioma cells, including U87 (PTEN null), U251 (PTEN mutant), LN229 (PTEN wild type), and LN229 (PTEN small interfering RNA). The phosphatidylinositol-3 kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways were inhibited by let-7a, and the inhibition effects had no difference in 4 glioma cells. We demonstrated that let-7a could induce suppression of glioma in vivo by generating a glioma xenograft model.

CONCLUSION: Our results indicated that let-7a suppresses its target transcript K-ras and inhibits glioma malignancy independent of PTEN expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app