JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The differential effect of metabolic alkalosis on maximum force and rate of force development during repeated, high-intensity cycling.

The purpose of this investigation was to assess the influence of sodium bicarbonate supplementation on maximal force production, rate of force development (RFD), and muscle recruitment during repeated bouts of high-intensity cycling. Ten male and female (n = 10) subjects completed two fixed-cadence, high-intensity cycling trials. Each trial consisted of a series of 30-s efforts at 120% peak power output (maximum graded test) that were interspersed with 30-s recovery periods until task failure. Prior to each trial, subjects consumed 0.3 g/kg sodium bicarbonate (ALK) or placebo (PLA). Maximal voluntary contractions were performed immediately after each 30-s effort. Maximal force (F max) was calculated as the greatest force recorded over a 25-ms period throughout the entire contraction duration while maximal RFD (RFD max) was calculated as the greatest 10-ms average slope throughout that same contraction. F max declined similarly in both the ALK and PLA conditions, with baseline values (ALK: 1,226 ± 393 N; PLA: 1,222 ± 369 N) declining nearly 295 ± 54 N [95% confidence interval (CI) = 84-508 N; P < 0.006]. RFD max also declined in both trials; however, a differential effect persisted between the ALK and PLA conditions. A main effect of condition was observed across the performance time period, with RFD max on average higher during ALK (ALK: 8,729 ± 1,169 N/s; PLA: 7,691 ± 1,526 N/s; mean difference between conditions 1,038 ± 451 N/s, 95% CI = 17-2,059 N/s; P < 0.048). These results demonstrate a differential effect of alkalosis on maximum force vs. maximum rate of force development during a whole body fatiguing task.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app