JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo.

We demonstrate the use of phase-stabilized swept-source optical coherence tomography to assess the propagation of low-amplitude (micron-level) waves induced by a focused air-pulse system in tissue-mimicking phantoms, a contact lens, a silicone eye model, and the mouse cornea in vivo. The results show that the wave velocity can be quantified from the analysis of wave propagation, thereby enabling the estimation of the sample elasticity using the model of surface wave propagation for the tissue-mimicking phantoms. This noninvasive, noncontact measurement technique involves low-force methods of tissue excitation that can be potentially used to assess the biomechanical properties of ocular and other delicate tissues in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app