Add like
Add dislike
Add to saved papers

Reorientation-induced spectral diffusion in vibrational sum-frequency-generation spectroscopy.

There is a growing appreciation that dynamic processes play an important role in determining the line shape in surface-selective, nonlinear spectroscopies such as vibrational sum-frequency-generation (VSFG). Here we analyze the influence that reorientation can have on VSFG spectra when the vibrational transition frequency is a function of orientation. Under these circumstances, reorientation-induced spectral diffusion (RISD) causes the underlying spectral line shape to become time dependent. Unlike previously reported mechanisms through which reorientation can contribute to the VSFG signal, RISD influences the line shape regardless of the degree of polarization of the Raman transition that is probed. We assess the impact of RISD on VSFG spectra using a model system of liquid acetonitrile at a silica interface. Comparison of delay-time-dependent VSFG spectra with simulations that employ static line shapes suggests that RISD contributes substantially to the spectra, particularly at delay times that are comparable to or greater than the probe pulse duration. The observed behavior is in qualitative agreement with a two-state RISD model that uses orientational distributions determined from previous molecular dynamics simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app