JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes.

Nanotechnology 2013 November 2
Single-walled carbon nanotube (SWCNT) transparent conducting films (TCFs) were fabricated for the electrodes of organic light-emitting diodes (OLEDs); three types of film were studied. The as-prepared SWCNT TCFs displayed a relatively low sheet resistance of 82.6 Ω/sq at 80.7 T% with a relatively large surface roughness of 30 nm. The TCFs were top-coated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to obtain PEDOT:PSS-coated TCFs. The PEDOT:PSS cover improved the conductivity and decreased the surface roughness to 12 nm at the cost of film transmittance. The SWCNT TCFs mixed with PEDOT:PSS (PM-TCFs) exhibited a high conductivity (70.6 Ω/sq at 81 T%) and a low surface roughness (3 nm) and were thus selected as the best TCFs for OLEDs. Blue flexible OLEDs with 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (Dpvbi) as the emitting layer were fabricated on TCFs with the same structures to evaluate the performances of the different types of SWCNT films for use in OLEDs. Of these three types of OLEDs, the PM-TCF devices exhibited the optimal performance with a maximum luminance of 2587 cd m(-2) and a current efficiency of 5.44 cd A(-1). This result was explored using field-emission scanning electron microscopy and atomic force microscopy to further study the mechanisms that are involved in applying SWCNT TCFs to OLEDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app