Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Liposomes with double-stranded DNA anchoring the bilayer to a hydrogel core.

Biomacromolecules 2013 October 15
Liposomes are important biomolecular nanostructures for handling membrane-associated molecules in the lab and delivering drugs in the clinic. In addition to their biomedical applications, they have been widely used as model cell membranes in biophysical studies. Here we present a liposome-based model membrane that mimics the attachment of membrane-resident molecules to the cytoskeleton. To facilitate this attachment, we have developed a lipid-based hybrid nanostructure in which the liposome bilayer membrane is covalently anchored to a biocompatible poly(ethylene) glycol (PEG) hydrogel core using short double-stranded DNA (dsDNA) linkers. The dsDNA linkers connect cholesterol groups that reside in the bilayer to vinyl groups that are incorporated in the cross-linked hydrogel backbone. Size exclusion chromatography (SEC) of intact and surfactant-treated nanoparticles confirms the formation of anchored hydrogel structures. Transmission electron microscopy (TEM) shows ~100 nm nanoparticles even after removal of unanchored phospholipids. The location of dsDNA groups at the hydrogel-bilayer interface is confirmed with a fluorescence assay. Using DNA as a linker between the bilayer and a hydrogel core allows for temperature-dependent release of the anchoring interaction, produces polymer nanogels with addressible hybridization sites on their surface, and provides a prototype structure for potential future oligonucleotide drug delivery applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app