Supervised embedding of textual predictors with applications in clinical diagnostics for pediatric cardiology

Thomas Ernest Perry, Hongyuan Zha, Ke Zhou, Patricio Frias, Dadan Zeng, Mark Braunstein
Journal of the American Medical Informatics Association: JAMIA 2014, 21 (e1): e136-42

OBJECTIVE: Electronic health records possess critical predictive information for machine-learning-based diagnostic aids. However, many traditional machine learning methods fail to simultaneously integrate textual data into the prediction process because of its high dimensionality. In this paper, we present a supervised method using Laplacian Eigenmaps to enable existing machine learning methods to estimate both low-dimensional representations of textual data and accurate predictors based on these low-dimensional representations at the same time.

MATERIALS AND METHODS: We present a supervised Laplacian Eigenmap method to enhance predictive models by embedding textual predictors into a low-dimensional latent space, which preserves the local similarities among textual data in high-dimensional space. The proposed implementation performs alternating optimization using gradient descent. For the evaluation, we applied our method to over 2000 patient records from a large single-center pediatric cardiology practice to predict if patients were diagnosed with cardiac disease. In our experiments, we consider relatively short textual descriptions because of data availability. We compared our method with latent semantic indexing, latent Dirichlet allocation, and local Fisher discriminant analysis. The results were assessed using four metrics: the area under the receiver operating characteristic curve (AUC), Matthews correlation coefficient (MCC), specificity, and sensitivity.

RESULTS AND DISCUSSION: The results indicate that supervised Laplacian Eigenmaps was the highest performing method in our study, achieving 0.782 and 0.374 for AUC and MCC, respectively. Supervised Laplacian Eigenmaps showed an increase of 8.16% in AUC and 20.6% in MCC over the baseline that excluded textual data and a 2.69% and 5.35% increase in AUC and MCC, respectively, over unsupervised Laplacian Eigenmaps.

CONCLUSIONS: As a solution, we present a supervised Laplacian Eigenmap method to embed textual predictors into a low-dimensional Euclidean space. This method allows many existing machine learning predictors to effectively and efficiently capture the potential of textual predictors, especially those based on short texts.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"