Add like
Add dislike
Add to saved papers

Mastoid and vertex low-frequency vibration-induced oVEMP in relation to medially directed acceleration of the labyrinth.

OBJECTIVE: To explore the stimulus site and stimulus configuration dependency for bone-conducted low-frequency vibration-induced ocular vestibular evoked myogenic potentials (oVEMPs).

METHODS: oVEMPs were tested in response to 125 Hz single cycle bone-conducted vibration in healthy subjects (n=12) and in patients with severe unilateral vestibular lesions (n=10). The stimulus sites were the mastoids and vertex. Both directions of initial stimulus motion were used.

RESULTS: At mastoid stimulation, the oVEMP to initial laterally directed acceleration of the labyrinth was delayed approximately the length of time of a stimulus half-cycle, as compared with the response to initial medially directed acceleration. At vertex stimulation, the oVEMP to positive initial acceleration was similar to the oVEMP to mastoid stimulation causing lateral initial acceleration. Likewise, the oVEMP to vertex negative initial acceleration was similar to mastoid stimulation causing initial medial acceleration. Further, patients with unilateral vestibular loss had, compared to healthy subjects, similar oVEMP from the healthy labyrinth.

CONCLUSIONS: A fundamental dependency on medially directed accelerations of the labyrinth, based on the latency differences revealed, may theoretically account for oVEMP in response to low-frequency stimulation.

SIGNIFICANCE: Low-frequency bone vibration stimulation at vertex might serve for simultaneous oVEMP testing of both ears.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app