JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Decreased resting-state interhemispheric coordination in first-episode, drug-naive paranoid schizophrenia.

BACKGROUND: Dysconnectivity hypothesis posits that schizophrenia relates to abnormalities in neuronal connectivity. However, little is known about the alterations of the interhemispheric resting-state functional connectivity (FC) in patients with paranoid schizophrenia. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC) method to investigate the interhemispheric FC of the whole brain in patients with paranoid schizophrenia at rest.

METHODS: Forty-nine first-episode, drug-naive patients with paranoid schizophrenia and 50 age-, gender-, and education-matched healthy subjects underwent a resting-state functional magnetic resonance imaging (fMRI) scans. An automated VMHC approach was used to analyze the data.

RESULTS: Patients exhibited lower VMHC than healthy subjects in the precuneus (PCu), the precentral gyrus, the superior temporal gyrus (STG), the middle occipital gyrus (MOG), and the fusiform gyrus/cerebellum lobule VI. No region showed greater VMHC in the patient group than in the control group. Significantly negative correlation was observed between VMHC in the precentral gyrus and the PANSS positive/total scores, and between VMHC in the STG and the PANSS positive/negative/total scores.

CONCLUSIONS: Our results suggest that interhemispheric resting-state FC of VMHC is reduced in paranoid schizophrenia with clinical implications for psychiatric symptomatology thus further contribute to the dysconnectivity hypothesis of schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app