We have located links that may give you full text access.
Journal Article
Research Support, Non-U.S. Gov't
Biotinidase knockout mice show cellular energy deficit and altered carbon metabolism gene expression similar to that of nutritional biotin deprivation: clues for the pathogenesis in the human inherited disorder.
Molecular Genetics and Metabolism 2013 November
Biotin is the prosthetic group of carboxylases that have important roles in the metabolism of glucose, fatty acids and amino acids. Biotinidase has a key role in the reutilization of the biotin, catalyzing the hydrolysis of biocytin (ε-N-biotinyl-l-lysine) and biocytin-containing peptides derived from carboxylase turnover, thus contributing substantially to the bioavailability of this vitamin. Deficient activity of biotinidase causes late-onset multiple carboxylase in humans, whose pathogenic mechanisms are poorly understood. Here we show that a knock-out biotinidase-deficient mouse from a C57BL/6 background that was fed a low biotin diet develops severe ATP deficit with activation of the energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK), inhibition of the signaling protein mTOR, driver of protein synthesis and growth, and affecting the expression of central-carbon metabolism genes. In addition, sensitivity to insulin is augmented. These changes are similar to those observed in nutritionally biotin-starved rats. These findings further our understanding of the pathogenesis of human biotinidase deficiency.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app