JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The time-dependent manner of sinusoidal electromagnetic fields on rat bone marrow mesenchymal stem cells proliferation, differentiation, and mineralization.

Electromagnetic fields (EMFs) are used clinically to promote fracture healing and slow down osteoporosis without knowledge of optimal parameters and underlying principles. In the present study, we investigate the effects of irritation for different durations with 15 Hz 1 mT sinusoidal EMFs (SEMFs) on rat bone marrow mesenchymal stem cells (BMSCs) proliferation, differentiation, and mineralization potentials. Our results show that SEMFs irritation promote rat BMSCs proliferation in a time-dependent manner, and the expression of osteogenic gen [Cbfa 1/RUNX2, bone sialoprotein (BSP), osteopontin (OPN)], alkaline phosphatase activity, and calcium deposition were enhanced after SEMFs treatment depending on the time duration of treatment. To determine the role of MEK/ERK signaling pathway, U0126, a MEK/ERK inhibitor was used. It can suppress rat BMSCs' proliferation with or without SEMF exposure, and partly attenuate the expression of osteogenesis related proteins (RUNX2, BSP, OPN) which were improved by SEMF. This finding suggests that the effects of SEMF on rat BMSCs' proliferation differentiation and mineralization are time duration dependent and MEK/ERK signaling pathway plays important role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app