JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activation of mTOR modulates SREBP-2 to induce foam cell formation through increased retinoblastoma protein phosphorylation.

Cardiovascular Research 2013 December 2
AIMS: Our previous studies demonstrated that inflammation contributes to atherosclerosis through disruption of the low density lipoprotein receptor (LDLr) pathway. However, this effect is overridden by rapamycin, which is an inhibitor of mammalian target of rapamycin (mTOR). This study investigated the role of the mTOR pathway in atherosclerosis in vivo and in vitro.

METHODS AND RESULTS: To induce inflammation, we used subcutaneous injection of 10% casein in apolipoprotein E knockout (ApoE KO) mice and lipopolysaccharide stimulation in rat vascular smooth muscle cells (VSMCs). Results showed that inflammation increased lipid accumulation in aortas of ApoE KO mice and in VSMCs, which were correlated with increased expressions of LDLr, sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP), and SREBP-2 as well as with enhanced translocation of SCAP/SREBP-2 complex from the endoplasmic reticulum (ER) to the Golgi. Furthermore, inflammation increased both the percentage of cells in the S phase of cell cycle and protein expressions of the phosphorylated forms of retinoblastoma tumour suppressor protein (Rb), mTOR, eukaryotic initiation factor 4E-binding protein 1 (4EBP1), and P70 S6 kinase. After treatment with rapamycin or mTOR siRNA, the activity of the mTOR pathway was blocked. Interestingly, the expression levels of LDLr, SCAP, and SREBP-2 and the translocation of SCAP/SREBP-2 complex from the ER to the Golgi in treated VSMCs were decreased even in the presence of inflammatory stress.

CONCLUSION: Our findings demonstrate for the first time that inflammation disrupts LDLr feedback regulation through the activation of the mTOR pathway. Increased mTORC1 activity was found to up-regulate SREBP-2-mediated cholesterol uptake through Rb phosphorylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app