Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Theoretical exploration of structures and electronic properties of double-electron oxidized guanine-cytosine base pairs with intriguing radical-radical interactions.

We present a computational study of the double-electron oxidized guanine-cytosine base pair as well as its deprotonated derivatives, focusing on their structural and electronic properties. Some novel electromagnetic characteristics are found. A hydrazine-like (N-N) cross-linked structure between the G and C radical moieties is the lowest-energy one for the [GC](2+) complexes. Double-electron oxidation can considerably destabilize the GC unit and leads to a barrier-hindered dissociation channel with negative dissociation energy. This channel is governed by a balance between electrostatic repulsion and attractive hydrogen-bonding interaction co-existing between G˙(+) and C˙(+). The proton/electron transfer reactions in the double-electron oxidized Watson-Crick base pair occur through a proton transfer induced charge migration mechanism. For the deprotonated [GC](2+) derivative, the [G(-H(+))C](+) series prefers to accompany by transfer of an electron from the G to C moiety when the G(+) is deprotonated, and its highest-doubly occupied molecular orbital mainly localizes over the C moiety with a π-bonding character. For the diradical G˙(+)C(-H)˙ series in which the C moiety is deprotonated, the two unpaired electrons reside one on each moiety in the π system. The diradical base pairs possess open-shell broken symmetry singlet states, and their magnetic coupling interactions are controlled by both intra- and inter-molecular interactions. The double-electron oxidized Watson-Crick base pair shows strong antiferromagnetic coupling, whereas the magnetic interactions of other diradical derivatives are relatively weak. This study highlights the crucial role of H-bonding in determining the magnetic interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app