JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effectiveness of stretch-shortening cycling in upper-limb extensor muscles during elite cross-country skiing with the double-poling technique.

This investigation was designed to evaluate the effectiveness of stretch-shortening cycling (SSC(EFF)) in upper-limb extensor muscles while cross-country skiing using the double-poling technique (DP). To this end, SSC(EFF) was analyzed in relation to DP velocity and performance. Eleven elite cross-country skiers performed an incremental test to determine maximal DP velocity (V(max)). Thereafter, cycle characteristics, elbow joint kinematics and poling forces were monitored on a treadmill while skiing at two sub-maximal and racing velocity (85% of V(max)). The average EMG activities of the triceps brachii and latissimus dorsi muscles were determined during the flexion and extension sub-phases of the poling cycle (EMG(FLEX), EMG(EXT)), as well as prior to pole plant (EMG(PRE)). SSC(EFF) was defined as the ratio of aEMG(FLEX) to aEMG(EXT). EMG(PRE) and EMG(FLEX) increased with velocity for both muscles (P < 0.01), as did SSC(EFF) (from 0.9 ± 0.3 to 1.3 ± 0.5 for the triceps brachii and from 0.9 ± 0.4 to 1.5 ± 0.5 for the latissimus dorsi) and poling force (from 253 ± 33 to 290 ± 36N; P < 0.05). Furthermore, SSC(EFF) was positively correlated to Vmax, to EMG(PRE) and EMG(FLEX) (P < 0.05). The neuromuscular adaptations made at higher velocities, when more poling force must be applied to the ground, exert a major influence on the DP performance of elite cross-country skiers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app